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(±)-Megistophylline I (1), carrying a dienone residue in the acridone framework, was synthesized using
the Claisen rearrangement to introduce a prenyl group as a key step.

� 2009 Elsevier Ltd. All rights reserved.
Megistophylline I (1), isolated from the bark of Sarcomelicope
megistophylla Hartley (Rutaceae) by Papageorgiou et al.,1 possesses
the acridone framework with a prenylated dienone residue, which
may be produced by biogenetic oxidation of the corresponding
phenol precursor (Fig. 1).

Megistoquinones I and II exhibiting antibacterial activity2

were also isolated from the same plant species. In our previous
ll rights reserved.
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studies on mangostins, the dienone derivative 2, which is very
similar to 1, was synthesized under anodic oxidation conditions.3

As 2 showed several biological activities, the structural similarity
of 1 to 2 suggested that 1 may also show similar antibacterial
activity. As information of new biological activity may contribute
to the development of efficient chemotherapeutic agents, we
planned to synthesize 1 using a similar phenolic oxidation ap-
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Scheme 1. Reagents and conditions: (a) Li2CO3, MeI, DMF, 57%; (b) K2CO3, BnBr, acetone, 95%; (c) 20% NaOH, THF, 91%; (d) DPPA, Et3N, BnOH, PhMe, quant.; (e) 40% KOH,
MeOH, 90%; (f) KOAc, Cu(OAc)2�H2O, DMF, 80%; (g) TFAA, CH2Cl2, 91%; (h) NaH, MeI, DMF, 82%; (i) MgBr2�Et2O, PhH, Et2O, 97%; (j) prenyl bromide, NaH, THF, then silica gel,
40%; (k) Pd Black, 1,4-cyclohexadiene, MeOH, 71%.
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proach to 2, as depicted in the retrosynthetic analysis (Scheme
1).

Phenolic oxidation approach: According to the analysis men-
tioned above, the synthesis was commenced by selective protec-
tion of methyl gallate 5 by methyl4 and benzyl groups to give
fully protected 6. Compound 6 was subsequently subjected to alka-
line hydrolysis, Curtius rearrangement, and removal of a benzyl-
oxycarbonyl group generated to give the amine 7. Condensation
of 7 with 2-iodobenzoic acid by the Ullmann protocol provided
Table 1
Oxidation conditions of 3
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Entry R Conditions Result

1 Me C.C.E. (0.7 mA/cm2, 2 F/mol), MeOH Unknown
2 Me PIFA, MeOH Unknown
3 Me PhI(OCH2CF3)2,5 MeOH Unknown
4 Me FeCl3, MeOH n.r.
5 Me PbO2, MeOH n.r.
6 Ac Ac Pb(OAc)4, PhH 1’ (72%)
the expected diarylamine 4 in 80% yield (Scheme 1). Cyclization
of 4 with trifluoroacetic anhydride (TFAA) proceeded smoothly to
give an acridone, which was subjected to successive N-methylation
and selective removal of a benzyl group at the C-1 position to give
9.8 Prenylation by the standard procedure produced not only 10,
but also the automatically rearranged product 11 in 40% yield, after
chromatographic separation. Removal of a benzyl group in 11 un-
der hydrogen transfer conditions provided 3,8 without undesired
over-reduction, which will give a saturated alkyl chain.

Among the oxidation conditions examined, clear reaction to the
target molecule was unsuccessful as shown in Table 1. When
Pb(OAc)4 in PhH was used as an oxidant, acetylated megistophyl-
line I (1’), was obtained in 72% yield. However removal of the acet-
yl group was unsuccessful under acidic or basic deprotection
conditions, involving 0.05 M KOH aq or 6 M HCl aq.

Claisen rearrangement approach: After elaboration of synthetic
approaches to 1, we turned our attention to the Claisen rearrange-
ment of a prenyl group (12?1), as shown in Scheme 2.

Thus, selective methylation was followed by bromination using
1,3-dibromo-5,5-dimethylhydantoin (DBDMH),4 protection as a
benzyl ether, and then Ullmann reaction of the bromine leading
to a methoxy group to give 13. Alkaline hydrolysis of the ester
function in 13, Curtius rearrangement, and removal of the gener-
ated benzyloxycarbonyl group yielded 14, which on condensation
with 8 and subsequent cyclization, followed by N-methylation,
gave the acridone 16.

Removal of a benzyl group afforded the phenol 17, which on
reaction with 3-chloro-3-methylbut-1-yne and selective reduction
gave the desired product 12, through 18.6,8 At the final stage, 12
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Scheme 2. Reagents and conditions: (a) Li2CO3, MeI, DMF, 57%; (b) DBDMH, CHCl3; (c) K2CO3, BnBr, DMF; (d) NaOMe, CuI, DMF, 38% in three steps; (e) 20% NaOH, THF, 88%;
(f) DPPA, Et3N, BnOH, PhMe, 81%; (g) 40% KOH, MeOH, 89%; (h) 8, KOAc, Cu(OAc)2�H2O, DMF; (i) TFAA, CH2Cl2, 73% in two steps; (j) 35% HCHO, NaCNBH3, AcOH, MeCN; (k)
K2CO3, MeI, acetone, 70% in two steps; (l) Pd black, 1,4-cyclohexadiene, MeOH, 93%; (m) K2CO3, KI, CuI, 3-chloro-3-methylbut-1-yne, acetone, 75%; (n) H2, Lindlar cat.,
quinoline, PhH–hexane (1:5), 12: 41%, 17: 28%; (o) neat, 200 �C, 65%.
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was heated at 200 �C (neat) under an argon atmosphere7 to give
(±)-megistophylline I (1), spectroscopic data of which were identi-
cal to those reported previously.1 Assessments of biological activity
of synthetic samples will be performed in due course.
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8. Selected spectroscopic data 3: dH (CDCl3) 1.75 (3H, s), 1.76 (3H, s), 3.48 (2H, d,

J = 4.9 Hz), 3.83 (3H, s), 4.03 (3H, s), 5.36 (1H, t, J = 4.9 Hz), 6.75 (1H, s), 7.25 (1H,
t, J = 8.8 Hz), 7.39 (1H, d, J = 8.8 Hz), 7.68 (1H, t, J = 7.8 Hz), 8.34 (1H, d,
J = 7.8 Hz); dC (CDCl3) 18.2, 25.7, 27.2, 43.6, 60.8, 104.5, 107.1, 116.2, 121.0,
121.4, 123.5, 125.9, 128.3, 132.5, 133.7, 143.0, 145.5, 152.8, 155.3, 182.0.
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Compound 9: dH (CDCl3) 3.62 (3H, s), 3.91 (3H, s), 5.21 (2H, s), 6.17 (1H, s), 7.12-
7.64 (8H, m), 8.25 (1H, d, J = 7.6 Hz), 14.72 (1H, s); dC (CDCl3) 29.8, 34.0. 60.8,
70.7, 88.6, 105.6, 114.4, 120.3, 121.2, 126.2, 127.1, 128.1, 128.6, 133.7, 136.1,
139.9, 141.6, 156.0, 158.1, 180.4. Compound 18: dH (CDCl3) 1.82 (6H, s), 2.46
(1H, s), 3.74 (3H, s), 3.96 (3H, s), 4.05 (3H, s), 7.27 (1H, t, J = 8.0 Hz), 7.49 (1H, d,
J = 8.0 Hz), 7.73 (1H, s, J = 8.0 Hz), 8.39 (1H, s, J = 8.0 Hz), 14.37 (1H, s); dC (CDCl3)
30.3, 40.8, 60.6, 61.3, 73.2, 76.7, 77.9, 85.5, 108.9, 115.5, 120.9, 121.3, 126.3,
128.1, 128.4, 134.2, 144.9, 150.7, 152.2, 180.2. Compound 12: dH (CDCl3) 1.59
(6H, s), 3.70 (3H, s), 3.91 (3H, s), 4.01 (3H, s), 5.15 (1H, dd, J = 10.8, 1 Hz), 5.22
(1H, dd, J = 17.4, 1 Hz), 6.30 (1H, dd, J = 10.8, 17.4 Hz) 7.28 (1H, t, J = 8.8 Hz), 7.48
(1H, d, J = 8.8 Hz), 7.73 (1H, td, J = 8.8, 1.6 Hz), 8.39 (1H, dd, J = 8.8, 1.6 Hz), 14.33
(1H, s); dC (CDCl3) 9.2, 25.7, 26.7, 35.5, 40.9, 60.36, 60.4, 61.1, 113.0, 115.6, 121.4,
126.4, 134.2, 134.8, 137.0, 143.3, 145.1, 151.3, 152.5, 182.2.


